Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Zhou, Weixiao Hu* and Chunnian Xia

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.110$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

10-(3,4-Dimethoxybenzylidene)anthrone

The title compound, $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3}$, was prepared from anthrone and 3,4-dimethoxybenzaldehyde in the presence of pyridine. X-ray analysis shows that the three rings of the anthraquinone moiety are not coplanar; the central six-membered ring assumes an asymmetric boat conformation in which the carbonyl C and the opposite C atom deviate from the plane by 0.190 (3) and 0.262 (3) Å, respectively.

Comment

10-Substituted benzylideneanthrones have been known for a long time for their widespread use as functional dyes and disperse dyes (Day, 1963). Recently, however, some 10substituted benzylideneanthrones have been found to possess high antitumor activity (Paull et al., 1992; Prinz et al., 2003). Owing to our interest in this area, we have prepared a series of 10 -substituted benzylideneanthrones and evaluated their anticancer activity. Our study on the structure-activity relationship (SAR) showed that a substituent on the benzylidene part of the molecule can affect the antitumor activity (Hu \& Zhou, 2004). In a continuation of our research on SAR, we prepared the title compound, (I), and investigated its structure.

(I)

The molecular structure of (I) is illustrated in Fig. 1, and selected bond lengths and angles are listed in Table 1. The three rings of the anthraquinone moiety are not coplanar, the dihedral angle between the two outer benzene rings being 24.68 (9) ${ }^{\circ}$. In the central six-membered ring, atoms $\mathrm{C} 11 / \mathrm{C} 12 /$ C13/C14 are coplanar within 0.0083 (9) \AA, atoms C5 and C10 deviating from the plane by 0.262 (3) and 0.190 (3) \AA, respectively; the ring assumes an asymmetric boat conformation.

Experimental

To a mixture of anthrone ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$) and 3,4-dimethoxybenzaldehyde ($2.0 \mathrm{~g}, 12 \mathrm{mmol}$) were added pyridine (30 ml) and piperidine ($0.5 \mathrm{~g}, 6 \mathrm{mmol}$). The reaction mixture was refluxed for 6 h

Received 1 September 2005 Accepted 8 September 2005 Online 28 September 2005

organic papers

and thin-layer chromatography showed that the reaction was complete. The mixture was cooled to room temperature, poured into methanol (75 ml) and placed in a refrigerator overnight. The precipitate which formed was collected and recrystallized twice from glacial acetic acid to afford orange crystals of (I) (2.4 g , yield 70.2%, m.p. $453-456 \mathrm{~K})$. Crystals suitable for X-ray analysis were grown from an ethanol solution by slow evaparation.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3}$
$M_{r}=342.37$
Monoclinic, $P 2_{\mathrm{f}} / n$
$a=11.709$ (3) A
$b=10.306$ (2) \AA
$c=14.847$ (6) \AA
$\beta=103.36(3)^{\circ}$
$V=1743.1$ (9) \AA^{3}
$Z=4$

$$
\begin{aligned}
& D_{x}=1.305 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \mathrm{K} \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=10.7-14.0^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, orange } \\
& 0.40 \times 0.40 \times 0.20 \mathrm{~mm} \\
& \\
& \\
& \theta_{\text {max }}=25.2^{\circ} \\
& h=-14 \rightarrow 13 \\
& k=0 \rightarrow 12 \\
& l=-1 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0484 P)^{2}\right. \\
& \quad \quad 0.3183 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0133 \text { (12) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C10	$1.230(2)$	C10-C14	$1.467(3)$
C5-C15	$1.348(2)$	C10-C13	$1.471(3)$
C5-C12	$1.480(2)$	C11-C14	$1.403(2)$
C5-C11	$1.484(3)$	C12-C13	$1.405(2)$
C15-C5-C12	$124.86(17)$	C21-C16-C15	$123.32(17)$
C15-C5-C11	$119.09(16)$	C17-C16-C15	$118.17(18)$
C5-C15-C16	$131.69(18)$		
C11-C5-C12-C13	$21.8(2)$	C5-C11-C14-C10	$4.7(3)$
C5-C12-C13-C10	$-1.5(3)$	C12-C5-C15-C16	$6.5(3)$
C14-C10-C13-C12	$-17.5(3)$	C5-C15-C16-C21	$48.2(3)$

H atoms were placed at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to $1.2 U_{\text {eq }}$ of their parent atoms (1.5 for methyl H atoms) and $\mathrm{C}-\mathrm{H}$ distances were constrained to $0.93 \AA(0.96 \AA$ for methyl H atoms).

Figure 1
The structure of (I), shown with 50% probability displacement ellipsoids.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD (McArdle, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support. We also acknowledge the support of the Science and Technology Development Fund (2005) of Zhejiang University of Technology.

References

Day, J. H. (1963). Chem. Rev. 63, 65-80.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hu, W.-X. \& Zhou, W. (2004). Bioorg. Med. Chem. Lett. 14, 621-622.
McArdle, P. (2000). J. Appl. Cryst. 33, 993.
Paull, K. D., Lin, C. M., Malspeis, L. \& Hamel, E. (1992). Cancer Res. 52, 3892 3900.

Prinz, H., Ishii, Y., Hirano, T., Stoiber, T., Gomez, J. A. C., Schmidt, P., Düssmann, H., Burger, A. M., Perhn, J. H. M., Günther, E. G., Unger, E. \& Umezawa, K. (2003). J. Med. Chem. 46, 3382-3394.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

